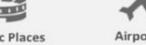


Ideal for:



Public Places

OVERVIEW

BT-SFP-G20-CS is a high performance, cost effective modules, which is supporting up to 1.25Gbps, and transmission distance up to 20km on SM fiber. The transceiver consists of two sections. The transmitter section incorporates a laser driver and a 1310nm FP laser. The receiver section consists of a PIN photodiode integrated with a trans impedance Preamplifier (TIA) and a limiting Amplifier. The module is hot pluggable into the 20-pin Connector. The high-speed electrical interface is based on low voltage logic, with nominal 100Ohms differential impedance and AC coupled in the module.

The optical output can be disabled by LVTTL high-level input of TX DIS. Transmit fault (Tx_Fault) is provided to indicate that the module transmitter has detected a fault Condition related to laser operation or safety. Loss of signal (RX_LOS) output is provided To indicate the loss of an input optical signal of receiver. An EEPROM in the transceiver Allows the user to access transceiver monitoring and configuration data via the 2- wire SFP Management interface. This interface uses a single address, A0h, with a memory map divided Into a lower and upper area. Basic digital diagnostic (DD) data is held in the lower area while Specific data is held in a series of tables in the high memory area.

FEATURES

- Up to 20km transmission on SMF
- Up to 1.25 Gbps
- 1310nm FP laser and PIN receiver
- 2-wire interface
- Hot pluggable
- Very low EMI and excellent ESD protection
- +3.3V power supply
- Power consumption less than 1.0W
- Operating case temperature: : 0~+70°C

PICTURE

APPLICATION

- High-speed storage area network
- Computer cluster cross-connect
- Custom high-speed data pipes

COMPLIANCE

- Compliant with IEEE 802.3Z
- Compliant with MSA SFF-8472
- Compliant with SFP MSA

SPECIFICATION

Absolute Maximum Ratings							
Parameter	Symbol	Min.	Max.	Unit	Notes		
Storage Temperature	Ts	-40	+85	$^{\circ}$			
Supply Voltage	V _{CC3}	0	3.6	V			
Relative Humidity	RH	5	+85	%	Note1		
Rx Input Average Power	Pmax	-	+1	dBm			

Note:

[1]Non-condensing state

Recommended Operating Conditions								
Parameter	Symbol	Min.	Typical	Max.	Unit			
Operating Case Temperature	Tc	0	25	+70	°C			
Power Supply Voltage	V _{CC3}	3.13	3.3	3.47	V			
Total Supply Current	I _{CC3}	-	-	300	mA			
Power Dissipation	P _D	-	-	1.0	W			
Data Rate			1.25		Gbps			

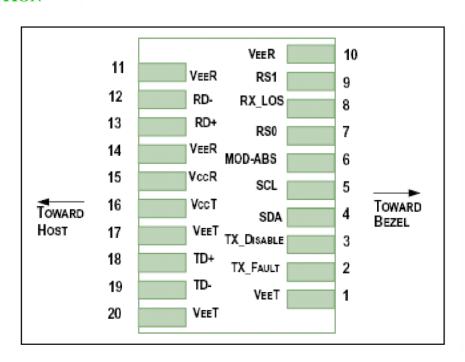
Parameter	Symbol	Min.	Typical	Max.	Unit	Note
Centre Wavelength	λc	1260	1310	1355	nm	
Spectral Width	Δλ			4	nm	FP (RMS
Average Optical Power	Pavg	-9	-	-3	dBm	
Laser Off Power	Poff	-	-	-40	dBm	
Extinction Ratio	ER	8.2	-	-	dB	
Operating Data Rate		-	1.25	-	Gbps	
Optical Eye Mask	Con	nplies with IEEE	802.3z eye r	masks when filt	ered	
Tx Input Diff. Voltage	VI	500	-	2400	mV	
Tx Fault Output Voltage Low	VoL	-0.3	-	0.4	V	
Tx Fault Output Voltage High	VoH	2.4	-	Vcc+0.3	V	

Receiver Operating Characteristic-Optical, Electrical									
Parameter Symbol Min. Typ. Max. Unit Note									
Center Wavelength	λr	1260		1620	nm				
Receive Sensitivity In Average Power	Psen	-	-	-22	dBm				

Los Assert	LosA	-35	-	-	dBm	
Los Dessert	LosD	-	-	-23	dBm	
Los Hysteresis	LosH	0.5	-	-6	dB	
Overload	Pin	-	-	-3	dBm	
Rx Output Diff Voltage	Vo	370	-	2000	mV	
Operating Data Rate	-	-	1.25	-	Gbps	

Digital Diagnostic Functions							
Parameter	Symbol	Min.	Max.	Unit	Note		
Temperature monitor absolute error	DMI_Temp	-3	3	℃	Over operating temp		
Laser power monitor absolute error	DMI_TX	-3	3	dB			
RX power monitor absolute error	DMI_RX	-3	3	dB			
Supply voltage monitor absolute error	DMI_VCC	-3%	+-3%	V			
Bias current monitor absolute error	DMI_Ibias	-10%	10%	mA			

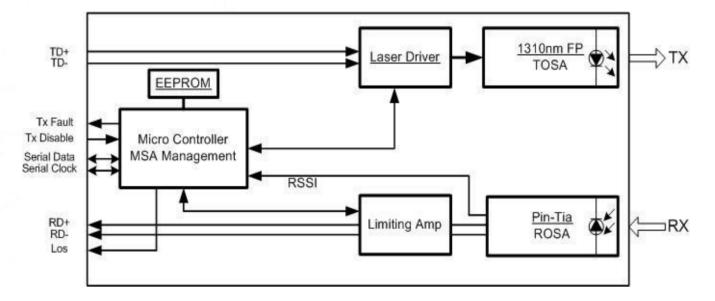
Control and Status I/O Timing Characteristics								
Parameter	Symbol	Min.	Max.	Unit	Note			
TX Disable Assert Time	t_off	-	100	μs	Note1			
TX Disable Negate Time	t_on	-	2	ms	Note2			
Time to initialize including reset of TX_Fault	t_init	-	300	ms	Note3			
TX Fault Assert Time	t_fault_on	-	1	ms	Note4			
TX Fault Reset Time	t_reset	10	-	μs	Note5			
LOS Assert Time	t_loss_on	-	100	μs	Note6			
LOS Deassert Time	t_loss_off	-	100	μs	Note7			



Notes:

- [1] Time from riding edge of TX Disable to when the optical output falls below 10% of nominal
- [2] Time from falling edge of TX Disable to when the modulated optical output rises above 90% of nominal
- [3] From power on or negation of TX Fault using TX Disable
- [4] Time from fault to TX fault on
- [5] Time from TX fault to TX nominal
- [6] Time from LOS state to RX LOS assert
- [7] Time from non-LOS state to RX LOS deassert.

PIN-OUT DEFINITION

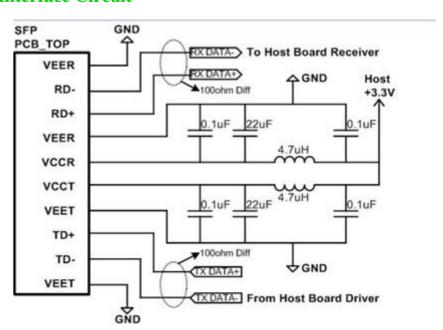

Pin Assignment

Pin	Logic	Symbol	Name/Description	Note
1		VeeT	Module Transmitter Ground	
2	LVTTL-O	TX_Fault	Module Transmitter Fault	
3	LVTTL-I	TX_Disable	Transmitter Disable; Turns off transmitter laser output	
4	LVTTL-I/O	SDA	2-wire Serial Interface Data Line (Same as MOD-DEF2 as defined in the INF-8074i)	
5	LVTTL-I/O	SCL	2-wire Serial Interface Clock (Same as MOD-DEF1 as defined in the INF-8074i)	
6	- N	MOD_ABS	Module Absent, connected to VeeT or VeeR in the module	
7	LVTTL-I	RS0	Not used	
8	LVTTL-O	RX_LOS	Receiver Loss of Signal Indication (In FC designated as RX_LOS, in SONET designated as LOS, and in Ethernet designated at Signal Detect)	
9	LVTTL-I	RS1	Not used	
10		VeeR	Module Receiver Ground	
11		VeeR	Module Receiver Ground	
12	CML-O	RD-	Receiver Inverted Data Output	
13	CML-O	RD+	Receiver Non-Inverted Data Output	
14		VeeR	Module Receiver Ground	
15		VccR	Module Receiver 3.3 V Supply	
16		VccT	Module Transmitter 3.3 V Supply	
17		VeeT	Module Transmitter Ground	
18	CML-I	TD+	Transmitter Non-Inverted Data Input	
19	CML-I	TD-	Transmitter Inverted Data Input	
20		VeeT	Module Transmitter Ground	

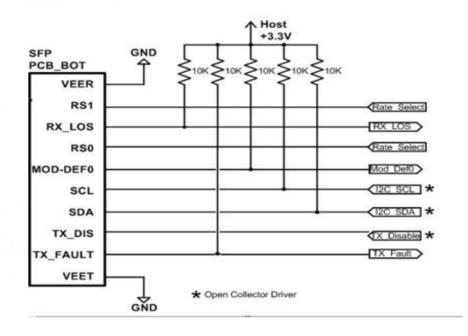
Block Diagram of Transceiver

Transmitter Section

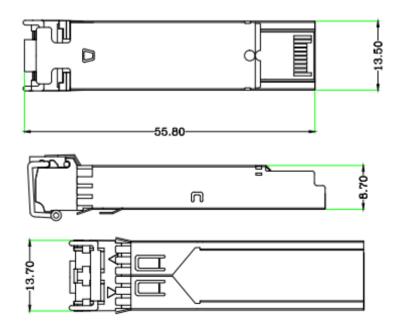
The transmitter converts 1.25Gbit/s PECL or CML electrical data into optical data compliant with the 1000BASE-LX Standard. It includes a Transmit Disable (Tx_Dis) function, where a logic "1" or no connection disables the laser, and A logic "0" enables normal operation. The transmitter features an automatic power control (APC) loop for consistent Optical output. A transmit Fault (Tx_Fault) signal indicates laser or safety issues, and is pulled up to Vcc_Host with a $4.7-10 \text{ k}\Omega$ resistor.TX_Disable turns off the transmitter when asserted high or left open, pulled up to VccT with a $4.7-10 \text{ k}\Omega$ resistor.



Transmitter Section

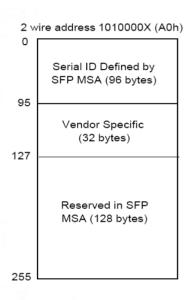

The receiver converts 1.25Gbit/s serial optical data into serial PECL/CML electrical data. An open collector compatible loss of signal is provided.Rx_LOS when high indicates an optical signal level below that specified in the relevant standard. The Rx_LOS when contacts is open drain/collector output and shall be pulled up to Vcc-Host in the host with a resistor in the range 4.7-10 k Ω , or with an active termination. Power supply filtering is recommended for both the transmitter and receiver. The Rx-LOS signals is intended as a preliminary indication to the system in which the SFP is installed that the received signal strength is below the specified range. Such an indication typically points to non-installed cables, broken, or a disabled ,failing or a powered off transmitter at the far end of the cable

Recommended Interface Circuit



Dimensions

Tolerance: X.X±0.10


 $X.XX \pm 0.05$

 $X.XXX \pm 0.01$

Digital Diagnostic Memory Map

Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be Specifically confirmed in writing by BORN before applicable to any particular order or contract.

In accordance with be the BORN policy of continuous improvement specifications may change without Notice The publication of information in this data sheet does not imply freedom from patent or other Protective rights of BORN or other. Further details are available from any BORN sales representative.