Overview

BT-SFP-IM03-11.1G SFP optical transceivers are based on 10G Ethernet IEEE 802.3ae standard and SFF-8431 standard, providing a fast and reliable interface for 10G Ethernet applications. The product implements digital diagnostics via a 2-wire serial bus ,compliant with the SFF-8472 standard.

Product Features

- Supports from 9.83 Gb/s to 11.3 Gb/s bit rates
- Compliant with IEEE 802.3ae 10GBASE-SR/SW
- Compliant with SFF-8431
- Hot-pluggable SFP+ footprint
- 850nm VCSEL laser transmitter
- Duplex LC connector
- Built-in digital diagnostic functions
- Up to 300m on OM3 MMF
- Low power consumption (Module work consumption <1W)
- Single power supply 3.3V
- RoHS Compliant
- Class 1 laser product complies with EN 60825-1

Applications

- 10GBASE-SR/SW Ethernet
- 10G Fibre Channel
- 10G CPRI

Ordering Information

Part Number	Description
	10GBASE-SR SFP+ 850nm LC
BT-SFP-IM03-11.1G	300m on MMF, with DOM
	function, Industrial Temperature

General Specifications

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Data Rate	DR	9.83	10.3125	11.3	Gb/s	1
Bit Error Rate	BER			10 ⁻¹²		
Operating Temperature		-40		85	°C	3
Storage Temperature	T _{STO}	-40		85	°C	3
Supply Current	I _{CC}		180	290	mA	4
Input Voltage	V _{CC}	3.14	3.3	3.46	V	
Maximum Voltage	V _{MAX}	-0.5		4	V	4

Notes:

1.IEEE 802.3ae

2.Case temperature

3.Ambient temperature

4.For electrical power interface

Link Distances

Data Rate	Fiber Type	Modal Bandwidth @850nm (MHz-km)	Distance Range (m)
9.83-11.3 Gb/s	62.5/125umMMF	160	26
9.83-11.3 Gb/s	62.5/125umMMF	200	33
9.83-11.3 Gb/s	50/125umMMF	400	66
9.83-11.3 Gb/s	50/125umMMF	500	82
9.83-11.3 Gb/s	50/125umMMF	2000	300

Optical - Characteristics - Transmitter

$V_{\text{CC}}\text{=}3.14V$ to 3.46V, T_{C}

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Output Optical Power	P _{TX}	-7		-1	dBm	1
Optical Center Wavelength	λc	840		860	nm	
Optical Modulation Amplitude	OMA		-1.5		dBm	2
Extinction Ratio	ER	3	5.5		dB	
Spectral Width (RMS)	Δλ			0.45	nm	
Relative Intensity Noise	RIN			-128	dB/Hz	
Transmitter Dispersion Penalty	TDP			3.9	dB	
Transmitter Jitter						3
Launch Power of OFF Transmitter	P _{OUT_OFF}			-30	dBm	1

Notes:

- 1. Average
- 2. IEEE 802.3ae
- 3. According to IEEE 802.3ae requirement

Optical - Characteristics - Receiver

$V_{\rm CC}\text{=}3.14V$ to 3.46V, $T_{\rm C}$

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Optical Center Wavelength	λc	840		860	nm	
Receiver Sensitivity@10.3Gb/s	R _{X_SEN}			-10	dBm	1
Receiver Overload	P _{OL}	0.5			dBm	
Receiver Reflectance	TR _{RX}			-12	dB	
LOS Assert	LOSA	-30			dBm	
LOS De-Assert	LOSD			-14	dBm	
LOS Hysteresis	LOSH	0.5			dB	

Notes:

1. Measured with worst ER;BER<10⁻¹²;2³¹-1 PRBS

Electrical - Characteristics - Transmitter

$V_{\rm CC}$ =3.14V to 3.46V, $T_{\rm C}$

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Input differential impedance	R _{IN}		100		Ω	
Differential data input swing	V _{IN PP}	180		700	mV	
Transmit disable voltage	VD	2		V _{CC}	V	
Transmit enable voltage	V _{EN}	V_{EE}		V _{EE} +0.8	V	

Electrical - Characteristics - Receiver

$V_{\rm CC}\text{=}3.14V$ to 3.46V, $T_{\rm C}$

Parameter	Symbol	Min	Тур	Мах	Unit	Remarks
Differential data output swing	V _{OUT PP}	300		850	mV	
Data output rise/fall time (20%-80%)	t _r /t _f	28			ps	
LOS Assert	V _{LOS A}	2		V _{CC HOST}	V	
LOS De-Assert	V _{LOS D}	V _{EE}		V _{EE} +0.5	V	

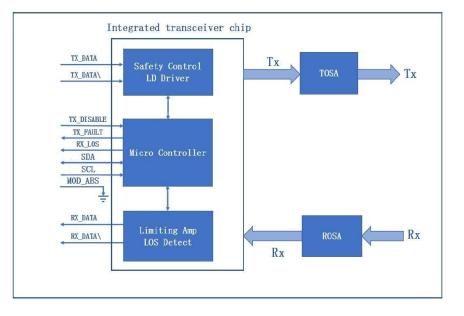
A0H Register Description

IIC Addr	Size	Name	Description	Values(HEX)
0	1	Identifier	SFP+	03
1	1	Extended Identifier	Use IIC interface	04
2	1	Connector	Connector Type = LC	07
2.40	0	Transsisser	100 Data 60	10 00 00 00 00 00
3-10	8	Transceiver	10G Base SR	00 00
11	1	Encoding	Encoding Type = NRZ	03
12	1	BR, Nominal	Nominal Bit Rate 10.3Gb/s	67
13	1	Rate Identifier	Without rate selection function	00
14	1	Length(9µm)-km	Link Length / SMF = N/A	00
15	1	Length (9µm)-100m	Link Length / SMF = N/A	00
16	1	Length (50µm)-10m	50µm MMF Link Length = 80m	08
17	1	Length (62.5µm)-10m	62.5µm MMF Link Length = 20m	02
18	1	Length (Copper)	Copper Link Length = N/A	00

19	1	Length (50µm)-10m	50µm MMF Link Length = 300m	1E	
20-35	16	Vendor name	Born	ASCII Format	
36	1	Transceiver	Reserved	00	
37-39	3	Vendor OUI	Without vendor OUI	00 00 00	
40-55	16	Vendor PN	Part number in the Ordering	Programmed by	
+0-33	10		Information	Factory	
56-59	4	Vendor Revision	Manufacturer product version	Programmed by	
	-	Number	number	Factory	
60-61	2	Wavelength	Laser Wavelength	03 52	
62	1	Reserved	Reserved	00	
63	1	CC_BASE	Checksum of bytes 0-62	Programmed by Factory	
				i actory	
			1.Tx_DIS		
64-65	2	Transceiver Options	2.Rx LOS	00 1A	
	-		_		
			3.Tx_FAULT		
66	1	BR, max	NA	00	
67	1	BR, min	NA	00	
68-83	16	Vendor SN	Manufacturer serial number	Programmed by	
				Factory	
84-91	8	Date code	Date code	Programmed by	
04-31	0	Date code		Factory	
			Internal calibration of DOM		
92	1	Monitoring Type	RxPower measurement using	68	
92			average optical power	00	
			1.Monitor Alarm and Warning of		
			TxPower and RxPower		
93	1	Enhanced Options	2.Tx_DIS Monitor and Control	F0	
			3.Rx LOS Monitor		
			4.Tx FAULT Monitor		

ORN

94	1	Compliance	Revision Implemented	08
95	1 CC EVE Check own of bytes 64.04		Programmed by	
90	1	CC_EXT	Check sum of bytes 64-94	Factory
96-127	32	Vandar Spaaifia	Vandar Spacific Area	Programmed by
90-127	32	Vendor Specific	Vendor Specific Area	Factory
100.055	100	Vandar Onacifia	Vander Cresifie Area	Programmed by
128-255 1	128	Vendor Specific	Vendor Specific Area	Factory


Digital Diagnostic Functions

BT-SFP-IM03-11.1G supports the 2-wire serial communication protocol as defined in SFF-8472. Digital diagnostic information is accessible over the 2-wire interface at the address 0xA2. Digital diagnostics for BT-SFP-IM03-11.1G are internally calibrated by default. The internal micro control unit accesses the device operating parameters in real time, Such as transceiver temperature, laser bias current, transmitted optical power, received optical power and transceiver supply voltage. The module implements the alarm function of the SFF-8472, alerts the user when a particular operating parameter exceeds the factory-set normal range.

DDM Threshold Information

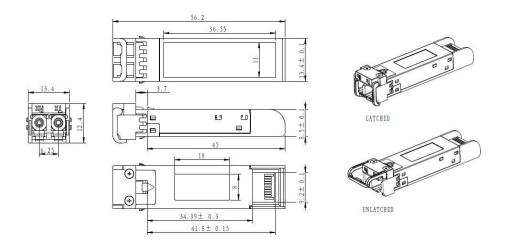
		Alarm T	hreshold	Warning Threshold		
Parameter		High Value	Low Value	High Value	Low Value	
Temperature (°C)	Ι	90 (5A 00)	-45 (D3 00)	85 (55 00)	-40 (D8 00)	
Vcc (V)		3.63(8D CC)	2.97 (74 04)	3.46 (87 28)	3.13 (7A 44)	
Bias (mA)		15 (1D 4C)	1 (01 F4)	12 (17 70)	2 (03 E8)	
TxPower (dBm)		0.79 (2E E0)	-7.97 (06 3C)	0.0 (27 10)	-7.0 (07 CB)	
RxPower (dBm)		3.01 (4E 20)	-16.02 (00 FA)	0.0 (27 10)	-13.0 (01 F5)	

Block-Diagram-of-Transceiver

Functions Description

The transmitter is mainly composed of a laser driver part of the intelligent transceiver chip and a TOSA(light-emitting component), the TOSA includes a 850nm VCSEL laser and a backlight photo detection chip,When the module is working, the input signal is connected to the intelligent transceiver chip, at this time, the laser driver of the intelligent transceiver chip supplies the bias current and the modulation cur- rent to the laser.The intelligent transceiver chip simultaneously uses an automatic optical power control (APC) feedback loop to maintain a constant average optical power of the laser output. The purpose is to eliminate the change of the output optical signal due to temperature changes and aging of the lightsource device.When the transmitter enable pin (TX_Disable) is high (TTL logic "1"), the laser output isturned off. When TX_Disable is low (TTL logic "0"), the laser will turn on within 1ms.When the transmitter fault signal (TX_Fault) is reported as high,indicates a transmitter failure caused by the transmitter's bias current or transmitted optical power or laser tube temperature exceeding a preset alarm threshold.Low indicates normal operation.

The receiver is mainly composed of a limiting amplifier part of the intelligent transceiver chip and a ROSA (light-receiving component), the ROSA includes a PIN photo detector and a trans impedance amplifier chip. When the ROSA detects the incident light signal, it will be converted into a photo-generated current by the PIN photo detector. The photo-generated current is converted into an electrical signal after passing through the trans impedance amplifier. The electrical signal is further amplified by the limiting amplifier of the intelligent transceiver chip, then outputs a fixed-amplitude electrical signal to the host. When the amplitude of the electrical signal received from the incident light conversion of the opposite optical transceiver module is lower than the set threshold, the module reports that the received signal is lost, the RX_LOS pin is high (logic "1"), which can be used to diagnose whether the physical signal is normal. The signal is operated in TTL level. The microprocessor inside the module monitors the module's operating voltage, temperature, transmitted optical power, received optical power, and laser bias current value in real time. The host acquires this information over a 2-wire serial bus.


After the module is powered on, the read value of the security level access registers 7BH \sim 7EH of A2H is replaced with 0x00. After the content of this group of registers is updated, the read value is the last written value. The security level 1 password of this module is 0x00001011. The method to enter the security level 1 working state is to convert and write the security level 1 password in the A2H 7BH \sim 7EH registers of the module, namely 0x00, 0x00, 0x10, 0x11. After entering the security level 1 working state, the user can directly write to the content of the A0H device address, or modify the content of the A2H 7FH table selection register to write to the contents of Table 00 or Table 01.And this version of the module does not support users to modify the security level 1 password.

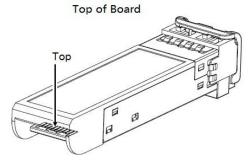
Product Weight

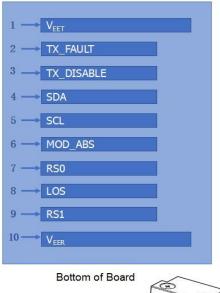
Net weight of module : 15.7g/pcs

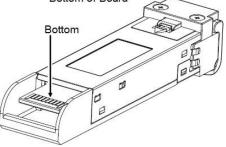
Net weight of dust cap: 0.95g/pcs

Dimensions

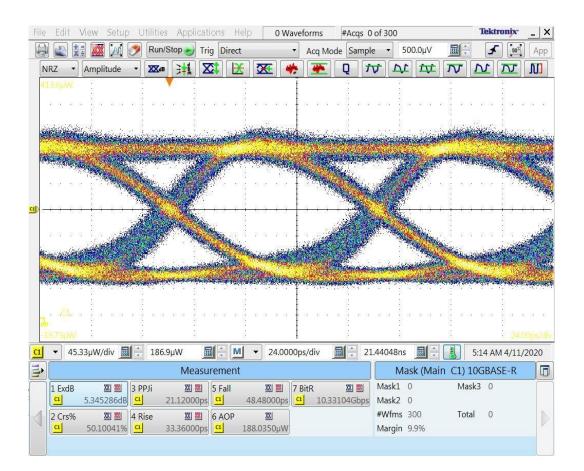
ALL DIMENSIONS ARE ±0.2mm UNLESS OTHERWISE SPECIFIEDUNIT: mm


BT-SFP-IM03-11.1G


industrial 10G, SFP module, double fiber, multi mode, 850m, 300m


Electrical Pad Layout

BORN



Typical Eye Diagram

Pin Assignment

PIN #	Symbol	Description	Remarks
1	V_{EET}	Transmitter ground (common with receiver ground)	1
2	TX_FAULT	Transmitter Fault	
3	TX DISABLE	Transmitter Disable. Laser output disabled on high or open	2
4	SDA [–]	2-wire Serial Interface Data Line	3
5	SCL	2-wire Serial Interface Clock Line	3
6	MOD ABS	Module Absent. Grounded within the module	3
7	RS0	No connection required	
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation	4
9	RS1	No connection required	1
10	V_{EER}	Receiver ground (common with transmitter ground)	1
11	V_{EER}	Receiver ground (common with transmitter ground)	1
12	RD-	Receiver Inverted DATA out. AC coupled	
13	RD+	Receiver Non-inverted DATA out. AC coupled	
14	V_{EER}	Receiver ground (common with transmitter ground)	1
15	V _{CCR}	Receiver power supply	
16	V _{CCT}	Transmitter power supply	
17	V _{EET}	Transmitter ground (common with receiver ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC coupled	
19	TD–	Transmitter Inverted DATA in. AC coupled	
20	V_{EET}	Transmitter ground (common with receiver ground)	1

Notes:

1. Circuit ground is isolated from chassis ground

2.Disabled: TDIS>2V or open,Enabled: TDIS<0.8V

3. Should Be pulled up with 4.7k $\,$ – 10k ohm on host board to a voltage between 2V and 3.6V $\,$

4.LOS is open collector output

References

1. IEEE standard 802.3ae. IEEE Standard Department,2005.

2. Enhanced 8.5 and 10 Gigabit Small Form Factor Pluggable Module "SFP+"-SFF-8431.

3. Digital Diagnostics Monitoring Interface for Optical Transceivers –SFF-8472.